

Transcript

My name is Stephen Diehl, I’m the CTO of a company called Adjoint Inc. Normally the presentations I
give are a bit more technical and involve quite a bit more equations and rigour, but I’m going to try and speak
today in the pseudocode known as English. [laughter] I’m going to talk about smart contracts, but rather than
delve into the deep formal methods that I work on every day, I thought I would give a high level review about
what I wish I knew about smart contracts before I got into this space.

The goals for my talk today are going to be what should you as a non-technical entrepreneur know
about the smart contract space, and what can I as a technical entrepreneur impart to you to help you on your
path toward building your successful smart contract business. In particular, what are the technical threats to
your business down the road, and what should you be looking at for the next generation of this space.

Let’s start with some terminology. Smart contracts, they’re completely unambiguous... Of course not;
they are many things to many people, but generally, they’re usually not smart and they’re usually not
contracts. Smart contracts are effectively programs that run on blockchain, in most definitions, but generally
they’re quite simple cases of logic and generally they’re not legal contracts in the legal sense.

What does Adjoint Inc. do? I’m the CTO of this company, we’re here in London. The boring side of our
business is we create settlement networks for creating executable forms of industry standard contracts, like
ISDA and EFET agreements, for modelling the structure of financial products, such as derivatives, swaps,
options on mutually distributed ledgers. I don’t work in the public chain database at Adjoint; I work on private
server networks between financial institutions, such as. Primarily we look at modelling executable forms of
OTC derivatives contracts, and I’m particularly focused on taking a description of the semantics that involve
the temporary rights and obligations of counterparties that are party to a derivatives trade, modelling that as
code, and then putting that on a distributed database so that we can have more efficient settlement systems.

The more interesting part of our business is that we also spend quite a bit of time doing research and
development on what I would call third and fourth generation blockchains. I do a bunch of research and
development on verifiable computing and formal methods, things like zk-SNARKs and reasoning about the
semantics of contracts formally.

The assumptions that I made when I was starting my business, the core assumption was consumers
would want to know what their smart contracts do and if they behave correctly. That turned out to be false, for
a variety of reasons. Firstly, most smart contracts are not actually realised. The ones that are running are
generally proof of concepts, where if they run correctly or don’t run correctly, nobody really cares. Thirdly,
most of the developers that are writing the smart contracts in this space are contracts, because generally
they’re not economically invested in the long-term success of that contract. So we end up with this space, or
this cesspool as I call it, of contracts that exist on the public chain, of which maybe there are five or so running
successfully that are not trivial token registries.

Let’s go into the hard truth about this space a bit. This space is very early: think kind of 1990s era
Internet. There’s a lot of promising ideas that are emerging, but I would say there’s a lot of hype and there’s a
lot of irrational thinking, so we’re very much in the kind of ~Web bang yahoo~ era of the smart contract space.

There are shockingly few contracts that actually work, there are maybe about five in the world. There
are a lot of token registries, and that’s about it. The [~4, 22:02] of the world are largely spectacular failures,
because a lot of engineers haven’t put the engineering effort into building robust smart contracts.

There are many really, really good ideas for smart contracts that are simply not realisable for technical

reasons. The primary thesis of this talk would be to think and do due diligence on the technology before you
invest large amount of resources in building these contracts. That’s kind of the dark side of this talk, now let’s
talk about the light side, about what we can do about those things.

Do your research before jumping head first into a project, make sure that what you want to do is
actually realisable on the public chain networks, the private chain networks, and the contracts that you’re
trying to model, you have it clear in your mind about what they should do before you start to execute and
code.

Talking about smart contracts, let’s go back to first principles and talk about what we mean by first
principles. I need a piece of logic that coordinates an agreement between counterparties, it is run on a
network with certain properties baked into the network itself. One is identity: individuals and parties have a
unique address that can be used to transfer data and transact with each other. Create persistence: data is
distributed across the network and can be shared if needed to by contracts. Non-repudiation: parties cannot
dispute the existence of transactions on the network and they cannot alter counterparties’ data. Assets as
well: on the public chain networks quite often we have an ambient cryptocurrency, and this is useful for some
contracts but it is optional. You can derive assets from having data, because assets are basically just
registries of value.

Smart contracts are not really new idea. What is new, however, with blockchain is that we have
distributed databases that have new properties. They’re largely these global incorruptible sources of truth that
we can build computational logic into, that we can use to mediate transactions and human workflows on smart
contracts. I claim that a smart contract is a programmatic description of a sequence of touchpoints that act to
synchronise data, and reach an agreement on some time varying set of rights and obligations between
counterparties. That’s one definition of a smart contract, and that’s about as good as you can get.

The issues with second generation, that I learned the hard way when trying to build smart contracts, is
that technology is rather immature. This is why my company spends quite a bit of time working on what I
would call third and fourth generation systems, because the chains that exist today are not going to exist
forever. We’re going to need to be able to write more complex logic on chain, we need to be able to have
more languages that we can express richer, tighter ideas on chain. Right now if you have ever written a smart
contract, I think you’ll find that you’re working at a level that’s far, far below the problem domain that you’ve set
out to work on; you’re working at the level of bit shifting and hashing, when you should be working at the level
of “~What does my counterparty need transacting about~?”

There’s a lack of talent in this space, the token value creates perverse incentives and scams. The
current languages we have are too low-level and they’re enormously difficult to reason about. Solidity, I claim,
makes PHP look like a work of genius. [laughs] We need richer type systems for reasoning about the
behaviour of our languages [~3, 26:24] ~before they’re run~, and we need to be able to have [~3], we need to
be able to transact on ledger about off-ledger data [~3] ~privacy constraints and amass economic details of
our trades~, because they simply can’t comply with existing legislation and data governance laws or even just
economic interests of the firms we transact with, if everything is stored in the clear on this [~2]. That’s a big
problem, and I think this problem is not addressed particularly well in the current generation, but [~5].

I claim the biggest issue with smart contracts is ~the lack of passage of reason about the code we
invent~. When I say reason about, I mean to ask questions. If we are going to represent contracts which are
agreements between people about a workload in time, we go to our lawyers to ask questions about what does
this imply for my business, my personal interest, my bank account; we should be able to ask our digital
lawyers, or our software, to analyse our contracts and ask much the same questions that we ask our lawyers.
These are questions that are basically [~3, 27:41] will something P, a predicate, always happen? Will it never
happen? Is it true for all possible states of the contract? Will it eventually be true? If P ever becomes true, then
at some point will Q become true? If at some point P becomes true, then will it stay true? Anybody who has
delved into the world of formal methods knows that this is a description about the high-level predicates in
temporal logic. I claim the properties that we want to state about our contracts can be phrased as temporal
logic problems.

If we translate those into questions about contracts, it becomes quite natural: does my contract ever
terminate? This is a question that is shockingly hard to ask a giant pile of Solidity code. Does my contract put
capital at risk? Does my contract accept nonsensical inputs to data feeds? Say if the LIBOR data is
nonsensical, will my contract [~3, 28:35]? Does my contract allow me to opt-out if my counterparty
disappears? Does my contract comply with EU data residency laws? When does my contract have cash flow
events? Does my contract allow me to safely alter terms with bilateral confirmation? This is something called
[~1]: two counterparties agree that they should change the economic details of a trade. Can they do that if
they both agree? Does the contract allow that? Does my contract allow provably fair voting, if it’s say equity or
something. Does my contract not allow a single party to empty it? This has been a point of some dispute
about the current generation of Solidity contracts.

The term that often gets thrown around in this space kind of haphazardly is that we need formal
verification, and quite often that’s where the statement usually ends: we need formal verification. What does
that actually mean? There’s a lot of people that are looking at this, and I claim a lot of these approaches get
confused. There’s two levels of formal verification, and one is at the implementation level. Do we know that
the underlying platform itself is correct? Is the implementation of say the ~the agreement virtual machine~ a
fair and faithful mapping [~3, 29:56]. Is it? There’s no formal proof that it is, we just don’t have [~6], and that’s
a problem. I think that’s largely actually being addressed, there’s a large body of work ~that have to formally
verify that an implementation in a language is correct~, [~3] in the last 20 years.

I’d say the more interesting problem, and one that often gets confused with verification and
implementation, is actually the verification at the logic level. The contracts that are specified in a language,
which we say is 100% correct: how do I know that the intent of my contract matches the implementation?
That’s a more difficult problem, and I claim there is no magic bullet that’s going to solve this problem. I claim
the answer is we need richer semantics that are much more [~4, 30:50]. I claim that formal verification
basically involves distilling your problem domain down into a small set of reasonable components which can
[~4] and maintain proofs of their correctness and their composition.

At Adjunct we work on a collection of such building blocks for ISDA and EFET agreements, that we
think almost all of the terms of the contract can be distilled down into these 10 different components, and then
we encode them as small building blocks [~3, 31:28] ~in time and with each other~ to give rise to the standard
financial products. These are things like confirmations, agreements, offers, novations, terminations,
memberships, ownerships, triggers, permissions and rights. These are all small control structures that have
specific invariants that ~under composition~ give rise to a larger set of invariants that we can feed off to a
model checker, and then we just add the temporal logic properties that we’ve discussed before, so effectively
that’s how you do formal verification. The details of that are non-trivial, and that’s what I work on. I claim if
you’re interested in formally verifying your contracts, the first thing you need to use to start doing that is to
write down what are the simplest rights and obligations to my counterparties that change in time, and distilling
it down into a smaller set of components that you can reason about ~is the first step to~ asking those
questions that we need to have answered.

The other big problem that I’ve spent a bit of time working on [~4, 32:30] is data privacy is a big
problem on the current implementation of current ledger systems. We need to be able to have our contracts
have public and private methods, and private methods are units of logic that counterparties can transact with
each other about data that they don’t share with each other. There’s a lot of cryptographic machinery that
allows this, and there’s been a lot of work on this over the last 20 years. We can’t do this in the current
generation of our systems, we can’t even say, “Prove to a counterparty that I have a preimage to a hash
function, that I possess [~3] private key.” I can’t prove equality of off-ledger data. ~We might have a party that
wants to share~, say, “Is the master agreement or the hash [~2] to prove to each other that we have the same
master agreements?” Again, there’s [~4] to these things [~5] integrate with our contracts, because our
contracts then act on data that’s not shared, in a way that the counterparties convince each other, without
sharing with each other, that they have the same data. [~4] economic trades, things like inequality of
off-ledger data, and also things like numerical comparisons. If you’re building an auction for instance, you
need to know if a bid [~3] counterparty [~6] counterparty on the other side, without sharing ~every bit of it~
because it’s sensitive and we can’t show that in public.

The takeaways I want to take away from the talk right now is that formal verification is not a
non-interactive process. It’s a process that largely involves the debugging of your own thinking about the
problem, and to do that we need to rely on tooling that lets us reason about the contracts formally, and we
need to distil our problem domains down into smaller components that we can reason about. For the next
generation of our systems, we should be able to ask these kind of questions of our contracts, and to do so is
not a problem that’s intractable. We can reason about code, we can reason about implementations of human
workflows, and we should be able to interrogate them for properties that are relevant to our businesses.

Companies are working on this, my company is working on this, if you’re interested, Adjoint, and
Mattereum, Vinay’s company. Vinay is one of the people I think who gets the problem domain here and
understands the current needs of this generation of smart contract developers, and is ~looking at building
solutions~ that address the problems I just discussed. That’s all I have. [applause]

[35:35]

[Q&A]

Vinay: One of my favourite quotes is Ted Nelson saying the Web is what we were trying to prevent.

There was a long period when every time somebody started a Web startup, it would ~typically
dictate~ [~4] ~they would implement it~ and they would raise a bunch of money to build out
more Web infrastructure. What do you think the difference is between a world where the smart
contract ecosystem continues to develop in this messy, ad hoc way without proper semantics,
versus a world where we get standards bodies, [~5] and things are semantically correct and
verifiable? What do those two futures look like?

Stephen: I don’t think there’s a dichotomy between the two. Every technology ends up evolving

organically, and what we’re seeing right now is probably the most organic stage, I think the
second generation is going to raise the capital that will build the third and the fourth
generations. So I don’t see an issue there, although I do think there’s not enough interest in
standards and building more complex contracts, and that’s probably the more concerning
portion for me, but I think it’s going to be resolved over time. I think we’re still in the ~Web
band era~ of this space. [laughs] That will change and will give rise to... [~4, 37:22] was
actually a viable business model [~3].

Christopher: I think both worlds will carry on developing in parallel, and it will be a gradual... Gradually, the

kind of Internet of Agreements world will conquer more and more territory as it becomes more
and more tractable. That’s partly to do with achieving agreements between the players, and
making the business case that it actually makes sense. If you look at the world of logistics,
logistics has been amassed for decades, and they still can’t get agreement to share data in a
sensible way. There’s been a reinvention of that wheel 20-30 times, at which point it really has
to do with business models, to make it economically interesting for the participants to adopt a

new standard, a new set of protocols, so that you actually move that sector into this kind of
world, just as one example.

Question: You explained the issues with the current generation of blockchains. I’m wondering if, without

necessarily building new blockchains, is it still possible to find solutions for the issues on the
under current platforms. Can we do something with ledgers [~2, 39:08] on this platform, or will
we have to build everything from scratch and build new stuff?

Christopher: [repeating the question] Can we build layers on the existing platforms to achieve the kind of

vision that we have in common, or do we need to strip it all down and build the foundations
from the bottom up?

Stephen: No, I think we can get quite a lot of bandwidth out of the second generation. I think there’s a

lot of things that can be built on the second generation [~3, 39:55] ~basically global distributed
stores that can model simple logic. I think there’s a lot of problems that can be modelled in
these systems~. I think if you end up building complex contracts, you’ll hit a wall quite quickly,
as a lot of firms actually have. But just the ability to even transact and execute small pieces of
logic with counterparties is actually quite useful ~in and of itself and~ [~4].

Question: You talk about the standardisation of logic and semantics and different ontologies and things

like that. Outside of the Web, those things have been produced ~sort of parallel~ with one
another. In the future, do you see these things sharding off and being created in enclaves, or
do you think that this will be standardised across one broad system?

Christopher: I can’t speak for the logic, but certainly in terms of semantic standards you have lots of

communities that are not aware of the existence of standards that are relevant to them, and
you have ~a lot of “not invented here” syndrome~. To give you a specific example, the
European Food Standards Agency has a fantastic messaging protocol standard: it’s
old-fashioned, it’s XML with codes, but is really, really detailed, very rigorous and very well
thought out. In the meantime, [~3, 41:44], the people behind the [~2] standard are reinventing
the wheel and developing a new lab standard which covers exactly the same space – that’s
going on all the time. So the extent to which you can drive people to use the same standards,
I think it’s exactly the same phenomenon as you have with human languages. I don’t know
how many nationalities there are in this room, but we all speak English, and that’s really driven
by economics. We all speak English because that’s where the business is, that’s where the
trade is, that’s where the jobs are. The same will apply to semantic standards, if there is a
business case that drives people to talk the same language, and then everybody will adopt it;
otherwise they won’t.

Scott: Just to follow up on that, a business case for adopting standards: both of you are working on

work that has a very long history in computer science and is actually quite understood by a
very knowledgeable set of folks that have broke their pick on these problems, learnt the
errors, made all the mistakes. So what is it that we need to do to incentivise those people to
join the conversation this time around? Because what’s happening is they’re not part of the
conversation, this isn’t actually having an impact. You have people running off on the
blockchain, creating the same mess that was created over the last three decades by people
who didn’t actually pay attention to what had happened before.

Christopher: I have two answers to that, one is you are the person who has got an answer to the

incentivisation problem. Secondly, there is something which some of my colleagues have
pointed out which I think is quite interesting, is that blockchain, if you look at it not as a
technology but as a phenomenon, as a social phenomenon, it is making people get around
the table and saying, “Right, how can we use blockchain to solve X?” and then they realise,
“Oh, but we need to have contracts to do that. Oh, but we need to do semantics to do that.
Oh, and we probably need some logic to do that,” etc. It’s almost as though blockchain as a
social phenomenon, as a bubble, whatever you want to call it, is driving people together, and
that may result in some interesting side effects that may overcome some of the long-standing
boundaries. Because even if it’s completely false to say there will be one blockchain that will

rule them all and we will all read and write for that, etc., that some people go around saying...
It doesn’t matter: you’ve got people around the room saying, “How are we going to not lose
out to this new world?” and then you explain to them the consequences and what they have to
do, and sometimes they do it.

Question: Question for Stephen. The Parity multi-sig wallet hack, the latest decent-sized hack: can you

tell us anything about that, and also ~the smart contract being~ the Wild West market [~4,
45:13]?

Stephen: The Parity multi-sig hack: Parity is an Ethereum client written in Rust, it had a major security

flaw a while back that was actually patched quite quickly. The bug effectively came down to
the transposition of a variable name in the implementation [~5], implementation of the wallet
itself, then it exposed a flaw in the cryptographic machinery around signatures. That’s an
implementation-level logic flaw, it’s something that fell out of the developers’ carelessness, but
it’s also extremely difficult to write these clients. I think the fact that most of them are written in
tools that have really, really horrible type systems, [~4] really difficult to reason about the
correct behaviour to specify that behaviour, and to have the compiler check it is even more
concerning. The Parity client is actually much better than average, and the fact that there’s a
flaw even in there is a bit concerning about the space. I mean, god only knows if there’s tens
of thousands of flaws in Parity that could be exploited by anyone or a nation state actor.

About the Wild West of contract verification, are you asking about people claiming to do
verification solutions, or about the [~1, 47:00] of the problem?

Question: I guess both. What do you look for in choosing a smart contract long term?

Stephen: Somebody that understands your problem domain, of what you’re trying to model, somebody

who is preferring smaller contracts, smaller and dumber contracts. If you work in the
publishing space, generally the lower surface area there is for the contract, ~your bugs can
decrease~.

Christopher: It sounds like common sense to me.

Stephen: Indeed, you would think, but... I mean, a lot of it is infrastructure. A lot of smart contracts ~in

the Ethereum Network~ are outsourced to like Russian or Ukrainian engineers who don’t have
a vested interest in ~producing coding~, [~3, 47:52] proof of concepts that are turned around,
at which point they have no interest in proving that the contract is going to be useful or not
exploitable. We need to have compilers and tools that can do the reasoning for us and reduce
the problem down to a ~decision procedure that we can check automatically~. We don’t
currently have ~those in place~. We need to have those tools for the third and fourth
generation.

Question: Currently contracts are written in natural language, because natural language is the language

that’s spoken by the business people who are interacting, and therefore it can convey the
meaning of what they intend to agree on. Is there a danger... We already have natural
language, and then ~the new interpretation of that sits~ almost two levels between... to get to
what the intention is and what’s written in the contract. If we’re adding a third layer, which is
software language, is there not a real danger that unless the whole world starts interacting,
speaking and understanding software, that you lose meaning or you cannot possibly... How
do you verify these contracts? Because surely you need to negotiate it in the first place in
natural language, and is that not inefficient?

Christopher: I think you’ve put your finger on a very important point. But if you look at the history of

civilisation, we’ve tended to hand over things to specialists over time. We handed over
contracts largely to lawyers and specialists of contracts, and in a certain sense my expectation
is that there will be a handing over to specialists who are able to look at the legal contract and
look at the smart contract and check that correspondence, particularly if, as I said before,
there is a good business case for that to happen. Yes, it’s going to ~lead to complications~.

But when we went from wading across rivers and taking it based upon our physical strength to
get across the river, to saying, “We’ll build a bridge and we’ll have a civil engineer who builds
a bridge, and we will trust that civil engineer to actually make a bridge that works.” Well, there
were a few hundred years when bridges were built, bridges would fall down, bridges would get
washed away; these days bridges tend to stay in place, except in very exceptional
circumstances. There’s a kind of learning curve there about how to build bridges, and we will
eventually learn how to build smart contracts in a way that works for the people who want
them, as opposed to wading across the river physically like we used to.

Stephen: I’ll add a little bit to the discussion about what’s the relationship between the smart contracts

and natural language contracts. I claim most natural language contracts are not going to be
ever put into an executable form, that there’s only a very, very small subset of contracts that
[~4, 51:08] very simple workload that involves a simple set of touchpoints [~5]. Then we start
talking about how do we take the ones that are amenable, to turn it into an executable form,
and then how do we... Do we go from natural language into code, or do we go from code into
natural language? There’s two schools of thought in the matter about that. [~7] whether we
should extract natural language from a core calculus, which describes formally,
mathematically, instead of formulas, about the [~2] rights and obligations of counterparties
based on ~observable quantities~, natural language or restricted English from that code
description, or do we take the code description and try to extract natural language from that?

The problem is that in both directions you have this loss in transformation, neither is actually
sufficient to represent the other, because human language is naturally ambiguous, and code
doesn’t capture all of the nuances of what human language can express. If you look at just a
standard ISDA agreement, typically there’s enormous amounts of clauses and descriptions
about states [~4, 52:32] simply not relevant, or they exist [~4] where is the jurisdiction, what’s
the governing law, all these kind of things. I claim that really we’re only interested in a very,
very small set of these contracts, and I don’t think we really need to be concerned about
proving that the two are equal. I think there’s going to be contracts that exist purely in digital
form, contracts that exist purely in natural language form, and that the intersection of those
two is actually quite small.

Question: Maybe it will be necessary to get the contracts differently. One example is Creative Commons,

where you have pictograms that represent some deeper relationships. I don’t know whether
you are familiar with Creative Commons: you start from the pictograms which represent text,
which is localised in as many languages as possible, ~unilaterally~ one version per language
and that you can have an underlying core. So maybe we just need to look at the contracts
differently and start to construct them a little bit differently.

Christopher: [~6, 54:04]. There’s an interesting history here: we’re all familiar with Internet languages like

XML and HTML, and their historical origins are in SGML in the 80s, and that was constructed
really to solve a problem that a big international company like Caterpillar had in producing its
manuals for maintaining a Caterpillar bulldozer in 25 languages. They didn’t want to translate
the English manual each time into 25 languages; they wanted to do semi-automatic
translation, by having a very simplified version of their manual which could then be
automatically mapped to different languages. That’s why these markup languages were
originally created. So in some sense we’re going full circle. [laughs] So yeah, in principle, yes.

Question: You mentioned ~sensorics and ubiquitous~ computing in your talk. I’m curious if there’s a

~historically proven way to standardise the input that would be used~ in smart contracts,
where hardware and software interaction has proven to be very successful and reliable in
developing these standards.

Christopher: I think it’s a wide open field at the moment. We at TNO developed something called SAREF,

which is an ontology for the Internet of Things, originally for domestic appliances but then
extended, and that’s basically dealing with the problem you’re describing, which is you’ve got
all these different sensors and they’re exposing their data in different formats, shapes and
things, what are you measuring, in what unit, etc., and you need a standardised layer on top

that will make everybody be able to read that data in a similar manner, which means
everybody needs to be able to be clear what the interpretation of that sensor really is, whether
it’s location, whether it’s temperature, whether it’s anything else. As we progress to build more
and more sensors which are measuring more and more environmental factors, this is going to
be an ongoing task, of standardising that.

Question: I wondered in terms of your research whether you’ve done any work looking at the rituals

allowing the establishment of contracts or the evolution of them, the social rituals that are very
established in the world, and what your views are on how they may evolve in this space.

Christopher: It sounds very interesting, but I know nothing about that.

Stephen: I just write code. I’m not a sociologist. [laughs]

Question: We’ve been thinking a lot about the future and how this could all go [~5, 57:30] if you imagine

20 years down the line that this ecosystem is at full maturity... I was wondering if you could
give us your optimistic view of how this all goes through, and then, perhaps more interestingly,
how you see it all going from your most pessimistic view?

Stephen: Pessimism I’m good at actually. What I would call the smart contract hellscape, where the

entire world is moving financial infrastructure over to software that’s not rigorously tested, it’s
amenable to large-scale hacks, we start seeing many, many cyber 9/11s everywhere, the
banks’ irrational exuberance about this technology, there’s also a lot of loss... That’s the
negative side.

The more positive side is in 20 years we’ll be eventually moving the entire world over to this
global, heterogeneous, computational substrate, in which the entire world’s computing
infrastructure can be rented and leased, and is used to confirm and allow a global network to
transact with each other across borders, it allows basically limitless free computing power for
anybody to apply it in use, it leads to post-scarcity economics and [~5, 59:10]. [laughs]

Christopher: I think that’s great. What can I add to that one? [laughs]

Ian: When we think about contracts, we normally ascribe the responsibility of the contracts to

lawyers in the old world, and then we move forward into the new world and start thinking
about smart contracts and verifiability and so forth and so on. Christopher, you brought up a
lovely example about bridge building. We ascribe responsibility to the engineer, and we hope
that the engineer has done a good job, which brings to mind the Canadian bridge that
something like 100 years ago collapsed. In the aftermath of that disaster, with the help of
Rudyard Kipling, they’ve created a ceremony where they presented to engineers the Iron
Ring, which was worn on the pinkie of the dominant hand, so as you were working to draft
your next bridge, your little Iron Ring would remind you, because it would keep bumping into
things, that you were responsible – great ceremony. So my question is: with smart contracts,
who wears the Iron Ring of responsibility for smart contracts?

Christopher: I think that goes back to something that Stephen has said, that we’re in the very, very early

stage, we’re probably in the pre bridge collapse stage in the smart contract world, and when
we get major collapses, then – somebody was talking about rituals – we might establish social
processes, where we establish clarity and responsibility and chain of not just legal
responsibility but in a certain sense cultural, social responsibility for those sort of things. Let’s
hope we get there before we get too many disasters. I think your point is entirely correct. I’m
not sure how we can “engineer” that to happen without sufficient disasters to force people to
change behaviour. In a certain sense, historically as a species, we tend to want a disaster
before we actually sort a visible problem out.

Comment: Historically, the family of the workers were living beneath the bridge, that was the solution.

[laughter]

Stephen: I would say that I think a lot of the onus lies on the engineers. I think that we as software
engineering profession don’t really have a good accreditation system around software
development, we’re kind of in the Wild West of... the entire profession, not just in smart
contracts. I think if we designed software the way we designed bridges, I think we would take
engineers out to the public square and shoot them, if they designed bridges the same way. So
I think we as a software profession need to figure out who should be writing the contracts, how
we should insure them and how [~4].

